Cholinergic dopamine release from the in vitro rabbit carotid body.
نویسندگان
چکیده
The aim of this study was to test whether cholinergic mechanisms regulate dopamine (DA) release from the carotid body (CB) and interact with DA D(2) autoreceptors. One hundred forty-two CBs from adult rabbits were infused in vitro in a surviving medium bubbled with O(2) (Bairam A, Marchal F, Cottet-Emard JM, Basson H, Pequignot JM, Hascoet JM, and Lahiri S. J Appl Physiol 80: 20-24, 1996). CB DA content and release were measured after 1 h of exposure to various treatments: control, cholinergic agonist (0.1-50 microM carbachol), full muscarinic antagonist (1 and 10 microM atropine), antagonists of M(1) and M(2) muscarinic receptors (1 and 10 microM pirenzepine and 10 microM AFDX-116, respectively), and the DA D(2) receptor antagonist domperidone (1 microM), alone and with carbachol (1 microM). Compared with control, the release of DA was significantly increased by carbachol (1-50 microM), AFDX-116, and domperidone and decreased by atropine (10 microM) and pirenzepine (10 microM). The effects of domperidone and carbachol were not significantly different but were clearly additive. It is concluded that, in the rabbit CB, M(1) and M(2) muscarinic receptor subtypes may be involved in the control of DA release, in addition to the DA D(2) autoreceptors.
منابع مشابه
Increased release of [(3)H]dopamine during low O(2) stimulation of rabbit carotid body in vitro.
Rabbit carotid bodies synthesized [3H]dopamine (DA) during a 3-h incubation period in modified Tyrode's solution containing 40 uM [3H]tyrosine. Following tbis loading period, the carotid bodies were exposed for one additional hour to unlabelled Tyrode's solution equilibrated with either 10% oxygen in nitrogen or with 100% oxygen. The carotid bodies exposed to low O2 released 81% more [3H]dopami...
متن کاملAcetylcholine release from the carotid body by hypoxia: evidence for the involvement of autoinhibitory receptors.
The purpose of the present study was to investigate whether hypoxia influences acetylcholine (ACh) release from the rabbit carotid body and, if so, to determine the mechanism(s) associated with this response. ACh is expressed in the rabbit carotid body (5.6 +/- 1.3 pmol/carotid body) as evidenced by electrochemical analysis. Immunocytochemical analysis of the primary cultures of the carotid bod...
متن کاملDifferential stimulus coupling to dopamine and norepinephrine stores in rabbit carotid body type I cells.
Recent studies suggest that preneural type I (glomus) cells in the arterial chemoreceptor tissue of the carotid body act as primary transducer elements which respond to natural stimuli (low O2, pH or increased CO2) by releasing chemical transmitter agents capable of exciting the closely apposed afferent nerve terminals. These type I cells contain multiple putative transmitters, but the identity...
متن کاملSílvia Vilares Conde
Carotid bodies (CB) are peripheral chemoreceptor organs sensing changes in arterial blood O2, CO2 and pH levels. Hypoxia and acidosis or hypercapnia activates CB chemoreceptor cells, which respond by releasing neurotransmitters in order to increase the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brainstem to induce a fan of...
متن کاملEffects of low pH on synthesis and release of catecholamines in the cat carotid body in vitro.
The rates of dopamine and noradrenaline synthesis in the cat carotid body (c.b.) are 5.9 +/- 0.58 pmol/c.b./2 h and 0.3 +/- 0.02 pmol/c.b./2 h, respectively. The synthesis is doubled when the organs are incubated at pH 7. Similarly, low pH induces a release of dopamine from the c.b. which is proportional to increased activity in the carotid sinus nerve.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 88 5 شماره
صفحات -
تاریخ انتشار 2000